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Abstract

During the COVID-19 pandemic, the use of mobile phone data for monitoring human mobil-

ity patterns has become increasingly common, both to study the impact of travel restrictions

on population movement and epidemiological modeling. Despite the importance of these

data, the use of location information to guide public policy can raise issues of privacy and

ethical use. Studies have shown that simple aggregation does not protect the privacy of an

individual, and there are no universal standards for aggregation that guarantee anonymity.

Newer methods, such as differential privacy, can provide statistically verifiable protection

against identifiability but have been largely untested as inputs for compartment models used

in infectious disease epidemiology. Our study examines the application of differential pri-

vacy as an anonymisation tool in epidemiological models, studying the impact of adding

quantifiable statistical noise to mobile phone-based location data on the bias of ten common

epidemiological metrics. We find that many epidemiological metrics are preserved and

remain close to their non-private values when the true noise state is less than 20, in a count

transition matrix, which corresponds to a privacy-less parameter � = 0.05 per release. We

show that differential privacy offers a robust approach to preserving individual privacy in

mobility data while providing useful population-level insights for public health. Importantly,

we have built a modular software pipeline to facilitate the replication and expansion of our

framework.

Author summary

Human mobility data has been used broadly in epidemiological population models to bet-

ter understand the transmission dynamics of an epidemic, predict its future trajectory,
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and evaluate potential interventions. The availability and use of these data inherently

raises the question of how we can balance individual privacy and the statistical utility of

these data. Unfortunately, there are few existing frameworks that allow us to quantify this

trade-off. Here, we have developed a framework to implement a differential privacy layer

on top of human mobility data which can guarantee a minimum level of privacy protec-

tion and evaluate their effects on the statistical utility of model outputs. We show that this

set of models and their outputs are resilient to high levels of privacy-preserving noise and

suggest a standard privacy threshold with an epsilon of 0.05. Finally, we provide a repro-

ducible framework for public health researchers and data providers to evaluate varying

levels of privacy-preserving noise in human mobility data inputs, models, and epidemio-

logical outputs.

Introduction

The use of private mobile phone data for various applications in public health, urban planning,

and response to natural disasters has been steadily growing for more than a decade. The

COVID-19 pandemic has accelerated this trend, and the use of mobility data has increased,

following the need to monitor and make policy decisions related to travel restrictions and lock-

downs. These data were incorporated into epidemiological models during the pandemic to

monitor or forecast SARS-COV-2 transmission.

Mobility data from mobile phones allow us to quantify changes in human movement, iden-

tify how social contacts cluster, evaluate where cases come into contact with others, and pre-

dict the probability of geographic spread [1–4]. Data acquired from cell phone metadata

recorded for billing purposes or from digital platforms are aggregated and shared with

researchers, who can then get significant information from mobility patterns [5–7]. Such stud-

ies have been used to explain the seasonal pattern of dengue in Pakistan and rubella in Kenya,

for example [5, 7]. These models are predominantly metapopulation models in which mobility

data are used to determine the impact of human migration on the trajectory of infectious dis-

eases. During the COVID-19 pandemic, the use of mobility data increased around the world,

and metapopulation models were used to understand the relationship between human mobil-

ity and the spread of the epidemic, predict the dynamics of the epidemic, and estimate the

effectiveness of nonpharmaceutical interventions such as lockdowns, reopenings, and social

distancing, based on other work modeling the spatial dynamics of pathogens [1, 5, 6].

Despite the statistical utility of these datasets, important privacy concerns remain about the

sharing of personal data, even if they are deidentified and aggregated. Standardised approaches

are currently lacking for data-sharing agreements and guidelines on the appropriate ways to

protect individual privacy while using mobility data for public health. As big data, the semantic

web, the interconnectedness of digital technology, and the "Internet of Things" (IoT) increase

the volume and velocity of data, it becomes easier to reanonymise such aggregated data [8, 9].

Several privacy frameworks have been developed to address the trade-off between privacy

and utility for statistical analyses [10–13]. Amongst these frameworks, differential privacy (DP)

has become the leading approach to balance this trade-off [14]. DP is a parameterized privacy

concept, where the privacy parameter � allows for a smooth trade-off between privacy and util-

ity for statistical analyses [14]. Informally, an algorithm that is �-differentially private ensures

that any particular output of the algorithm is at most e� more likely when we arbitrarily change

one data entry. In DP, observations are perturbed by adding noise coming from a carefully

chosen distribution [14]. A DP mechanism applied to a mobility matrix of travel between
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different locations will prevent disclosing the exact number of movements and will also keep

the private information of the individual (home and work location, etc.) hidden.

DP is considered the gold standard of statistical privacy, as its application can be proven to

preserve privacy while quantifying the trade-off between privacy and the utility of the released

statistics [15]. The trade-off between privacy and utility is important because the noisier the

output, the less useful it may be for inference. Increasingly, DP is used for the public release of

data sets by industries and governments such as Google [16], Apple [17], Microsoft [18], Face-

book (Meta), Uber [19], and the US Census Bureau [20], but it remains unclear how DP

should be used in the context of mobility data for epidemiological frameworks.

In this paper, we examine how differential privacy can be applied to infectious disease

modeling and analyse the impact of different levels of privacy on the reconstruction of epi-

demic features through simulation. Our method is based on a previously validated epidemio-

logical metapopulation model, and we investigate the effect of the addition of privacy-

preserving noise on key epidemiological outputs of interest. We used real-world mobility data

from New York State during the early stages of the COVID-19 pandemic in the United States

and show that the application of differential privacy can bias certain epidemiological metrics.

We propose that differential privacy offers a rigorous and quantifiable approach to safely using

mobile phone data during epidemics for modeling purposes.

Results

Mobility data

The mobility matrices included data from August 15 to November 15, 2020, and contained a

total of 812,587 transitions made between sixty-two counties of New York State, with a mean

of 9,029 transitions a day. The observed daily transitions ranged from a minimum of 600,

occurring in Hamilton County, to a maximum of 77,131 in Suffolk County. The maximum

transition between counties occurred between Queens and Kings counties, with 5,262, whereas

we counted 14 combinations of zero transitions during the selected windows. After applying

DP, the absolute number of transitions was affected, but the relative rank of the intercounty

routes with respect to the volume of travel remained the same. We initiated a variety of com-

mon scenarios to assess the effect of added noise on bias and variability in our epidemiological

parameters of interest.

Scenarios with initial outbreaks in large and small regions

We first address the impact of starting epidemics in large versus small counties to determine

whether DP would have systematic impacts on the dynamics overall. Kings and Queens are

the largest counties in New York State with an approximate population of 2 million individuals

each [21]. Allegany and Essex are the smallest counties in New York state, with populations of

approximately 46,000 and 37,000 individuals, respectively. In each of these counties (first the

two largest, and then the two smallest), we seeded 20 infectious individuals to spark an epi-

demic. In the scenario with large counties, we observed epidemics that started around the 50th

day and peaked around the 75th day, reaching approximately 1% of the population living in

these areas. In the smaller counties, the epidemic began around the 60th day and peaked on

the 150th day, reaching approximately 5% of the population (S1 Fig).

We evaluated the metrics of interest over 1,000 iterations for each combination of scenarios

and noise. We observed that when the epidemic is seeded in Queens and Kings, the epidemic

size and the proportion of counties with at least one case are higher compared to an outbreak

seeded in smaller counties (Fig 1A). As metrics can exist on very different scales, we calculate

the normalized distribution of bootstrapped metrics where a minimum amount of noise is
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Fig 1. Metapopulation metric distribution for different values of epsilon for Scenario A: Location of the first cases, B: change in the mobility network, and C:

change in the parameters of the metapopulation model. As metrics can exist on very different scales, we calculate the normalized distribution of bootstrapped
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added. We then compare this to the median value of bootstrapped values at increasing values

of noise to describe the change from expectation. When noise is above 20, the values for the

epidemic size for observed, asymptomatic, and symptomatic infected, the size at the peak of

the epidemic, and the proportion of counties with one case are lower than those obtained

when the mobility matrix is not perturbed. However, the values obtained for the rate of spread,

effective reproductive rate, risk of importation, probability of importation, and mean importa-

tion rate are higher than those obtained for the non-perturbed dataset (Fig 1).

Scenarios with Epidemics in Well- and Poorly Connected Regions

To address how the effect of DP on network connectivity would impact predicted disease

dynamics, we simulated an outbreak in three pairs of counties with varying levels of connectiv-

ity to Kings County. The first simulation in Monroe and Saratoga counties was designed to

assess the impact of low connectivity (less than 20% of transitions during the period) on the

disease dynamic. The second scenario targeted counties in the median of transitions, such as

Putman and Westchester counties, to assess the dose-response effect of the epidemiological

model. The third scenario was simulated in Schoharie and Lewis counties (no transition to

Kings County during the period) to assess the impact in places that were isolated in the larger

mobility network. When the outbreak is simulated in Monroe and Saratoga (Scenario 3), the

epidemic begins around the 60th day and the number of infected persons reaches the maxi-

mum around the 150th day, with less than 1% of the total population living in this area

infected. When the outbreak is seeded in medium connectivity areas such as Putnam and

Westchester (Scenario 4), less than 0.6% of the population became infected around the 75th

day after the epidemic peaks around the 40th day. When the outbreak is seeded in an area with

low connectivity to Kings County, i.e., connectivity close to 0 such as Lewis and Schoharie

(scenario 5), less than 0.07% of the population is infected around the 200th day since the epi-

demic only starts around the 90th day (S1 Fig).

We found that regardless of network connectivity, epidemiological metrics degraded as noise

increased (Fig 1B). As such in the three scenarios addressing the change in the network of mobil-

ity, namely when i) the epidemic is sparked in two random counties having less than 20% transi-

tion to Kings County, ii) the epidemic is sparked in two random counties with a median

transition to Kings County, and iii) the epidemic is sparked in a county with no transition to

Kings County; we observed a similar pattern in the distribution of the metric to what we observed

when there was an outbreak in small counties (scenario 2). Specifically, the size of the epidemic,

the day that the epidemic peaks, the fraction of counties with at least one case, the size of the epi-

demic, the average exposure time, the maximum exposure time, and the minimum exposure time

are smaller than the baseline. The spread rate, the effective reproductive rate, the importation risk,

the mean importation risk rate, and the probability of infection are higher than the baseline, espe-

cially when the noise is above 33.33 (Fig 1B). We observed a significant change in the epidemio-

logical metrics only when the value of noise added to perturb the transition matrix is above those

of the scenario targeting the location of the first cases (small versus large county) (Fig 1B).

Scenarios with varying epidemiological parameters

To address the nature of the epidemic, we simulated three changes in the trajectory of the epi-

demic in Kings and Queens counties. Specifically, we simulated i) a faster epidemic through

metrics where a minimum amount of noise is added.We then compare this to the median value of bootstrapped values at increasing values of noise to describe the
change from expectation.

https://doi.org/10.1371/journal.pdig.0000233.g001
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the increase of the transmission rate, ii) a heavy load of asymptomatic individuals, and ii) an

absence of asymptomatic individuals in the population. When the transmission rate increases

(scenario 6) we can observe that the epidemic starts around the 40th day and reaches its peak

around the 75th with almost 3% of the population infected. When the fraction of symptomatic

individuals increases, the size of the epidemic also increases and reaches 1.5% of the popula-

tion around the 75th day since the epidemic starts around the 40th day after the first case (sce-

nario 7). When the fraction of documented infection decreases (scenario 8), there is no

declared epidemic, as only asymptomatic people are recorded in the population, reaching a

fraction of 0.008% after the 100th day.

When the transmission rate increases, the epidemic spreads quickly (Fig 1C). When the

asymptomatic rate increases, the probability of infection will subsequently increase. The trajec-

tory of the epidemic is similar to the non-perturbed dataset. However, above the noise of

33.33, epidemiological metrics are either more conservative (lower than those of the baseline)

or more volatile (higher than those of the baseline) (Fig 1C). Furthermore, we found that the

fraction of counties with at least one case is not affected by the change in i) the transmission

rate and ii) the fraction of symptomatic individuals (Fig 1C).

Discussion

Several metapopulation models were developed throughout the SARS-CoV2 pandemic to

inform decision making, predict the trajectory of the disease and identify weaknesses in the

healthcare system [22–25]. The mobility data used to parameterize these models provided

information on geographic and behavioral heterogeneity between populations, but these data

could theoretically be used to identify individuals or their unique travel behavior, which war-

rants privacy preservation measures [26]. Our study shows that in metapopulation models that

use mobility data, the application of privacy-preserving noise results in unbiased estimates of

metrics of interest at a wide range of noise values with an upper limit that allows for a signifi-

cant privacy-preserving budget.

We found that mobility matrices that are infused with noise values below 20, that is, loss of

privacy loss of at least � = 0.05 per matrix, can help protect the privacy of individuals who con-

tribute their data, while limiting bias in the estimation of public health measures of interest

when used for epidemiological modeling. Importantly, as we have already added a minimum

amount of noise to preserve privacy this limit represents a minimum threshold allowing for

the addition of larger amount of privacy-preserving noise than previous studies have shown.

Intuitively, adding noise to these mobility matrices may result in newly created connections

between locations that would not otherwise be connected, strengthening connections that

would otherwise be weak, or vice versa. In some cases, we may even see the removal of connec-

tions on specific days. Predictions of the spread of the rural area may be more affected than

those of the areas connected to urban centers. However, sensitivity analyses could be per-

formed to provide robustness, and the purpose and geographic scope of the model will dictate

how important this degradation is.

As noise increases above 20, estimates such as the epidemic size, the day that the epidemic

peaks, and the average epidemic size are biased downwards as the mobility matrix decreases

connectivity to large population centers and distributes the epidemic into many smaller loca-

tions with lower contact rates. Similarly, estimates such as the rate of spread, the risk of impor-

tation, and the effective reproduction rate are biased upwards as mobility between smaller and

poorly connected locations increases, leading to greater importation into areas with smaller

population sizes. Our study demonstrates that for epidemiological metapopulation models
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using mobility data, metrics estimates are fairly unbiased up to a noise threshold of 20, which

provides greater privacy protection than previous studies [25, 27].

Although our pipeline only evaluated a specific combination of mobility data, metapopula-

tion model, and metrics, it provides a " plug-and-play " interface for researchers to assess bias

using proprietary models and mobility data [28]. As mobility data sets become increasingly

available and used in metapopulation models, we provide a flexible framework to identify the

evaluation-specific maximum privacy-preserving noise that can be incorporated into these

mobility data before they result in biased outputs. Data providers can interact with researchers

in many ways and the goal of this study is not to systematize this relationship. Instead, this

“plug-and-play” framework can be used by researchers to simulate the effects of the applica-

tion of differential privacy methods on their epidemiological parameters of interest. This

would allow researchers to have an informed discussion with data providers before the data

are sourced to identify an optimal threshold of noise which protects user privacy while also

allowing for unbiased estimates of epidemiological parameters to be inferred.

Methods

Ethical statements

This study is a nonhuman subject research and does not necessitate neither an IRB approval

nor an informed consent. Furthermore, all methods were performed in accordance with rele-

vant guidelines and regulations.

Study workflow

The pipeline workflow for the next analysis is represented in the following schematic architec-

ture (Fig 2). This flow diagram shows the preprocessing before and after acquisition of the

mobility data, and, most importantly, how synthetic data has been used to parameterize the

metapopulation mode. Since obtaining non-processed data from third parties was impossible,

we overlaid noise on pre-processed mobility data to determine the impact of differential pri-

vacy on the metapopulation model.

Mobility data

We obtained mobility data from Camber Systems (the provider), a third-party analytics com-

pany that purchased advertising technology (ad tech) data from many data brokers. The data

covered 90 days from August 15 to November 15, 2020, representing between 3–7% of the

total American Community Survey (ACS), a county-specific population in New York State.

The original data consisted of a log of user global positioning system (GPS) coordinates, sorted

and grouped by a unique device identification number. These data have all the identifying

information removed, cleaned to remove duplicate entries or unrealistic usage, used to calcu-

late device-specific modal locations, and aggregated at the county-level [29]. The key metric of

interest used in these analyses was movement between counties in 8-hour increments. Move-

ment was defined as the change in a device’s location from time period t-1 to the location of

the device at time t. To further guarantee anonymity, the provider used a predefined group of

devices per area, removed data that represented small numbers of devices, and applied an ini-

tial layer of privacy noise to the data set to ensure that the basic privacy preservation mecha-

nisms were in place before providing access to these data to researchers [30]. However, the

data provider did not disclose the initial privacy method and the degree of noise applied to

maintain individual and group privacy. We then added an additional layer of post production

differential privacy (PPDP) (see next section) and aggregated it into 24-hour blocks of time
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Fig 2. Flow diagram showing the architecture of the modular software pipeline designed to quantify the tradeoff privacy utility of

mobility data post-differential privacy processing in epidemiological models. The boxes in pink represent the DP process, the boxes in red

represent cleansing processes by both data providers and modelers, the boxes in green represent the data, the boxes in white are predefined

processes, and the box in yellow stands for the metapopulation model.

https://doi.org/10.1371/journal.pdig.0000233.g002
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with averaged transitions between counties. The process consists of generating an origin/desti-

nation matrix normalised to the ACS population for each county. The matrix was then ran-

domly sampled and replicated 500 times to extend the data set time period. In most locations,

the simulated outbreak was just beginning or at the exponential growth phase after the 90 days

of the primary dataset. In light of this observation, it becomes particularly challenging to assess

the impact of DP on epidemiological metrics which is why we used bootstrapping to form a

mobility dataset of 500 days.

Application of differential privacy

As background, a mechanismM taking a database in a domainH and producing outputs in a

domain RM:H!R is (�, δ (�, δ)-differential private if and only if for every pair of neighboring

databases x, y2H, such that they differ in at most one entry, and for any subset of possible out-

puts S�R, we have

Pr½MðxÞ 2 S� � e� Pr½MðyÞ 2 S� þ d; ð1Þ

where the probability is taken over the randomness of the mechanismM and is denoted the

“security parameter’ [31]. Eq (1) suggests that if two databases x, y are sufficiently close due to

the perturbation, then it becomes difficult for random attackers to uncover the privacy of the

observed individuals. This is achieved by perturbing the true observations by adding noise

from a carefully chosen distribution. The parameter quantifying the privacy loss � represents

the likelihood that an attacker with nearly full information about a database can determine

whether their target is in the database. DP offers a quantifiable tradeoff between accuracy and

privacy. Mobility data is aggregated data that could display the transmission of small groups of

individuals. Our goal is to preserve the privacy of these groups and hide low transitions by

applying differential privacy.

The Laplace mechanism is a common differential privacy mechanism, which adds Laplace

noise to query values in which the noise scales with Δ/�, where Δ is the query sensitivity. DP

compositions adaptively allow us to design a mechanism with several building blocks, ensuring

efficient privacy protection achievable using the advanced composition [10].

For all �, δ, δ0>0, the class of (�, δ)-differentially private mechanisms satisfies (�0, kδ+δ0)-dif-

ferential privacy under k-fold adaptive composition for (Eq 2):

�0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2klog
1

d0

� �s

�þ k� e� � 1ð Þ ð2Þ

where δ0 is a security parameter extremely small δ0 = 2−30

To assess the tradeoff between accuracy and utility, we further privatize the synthetic data

using the composition theorem with the privacy parameter epsilon ranging from 0.01 to 16 by

the means of the Laplace mechanism using the ‘smartnoise sdk’ library [32]. The transition

data contains the movements for 8-hour time blocks over 90 days, and using the advanced

composition theorem with k = 270, the total privacy budget is as follows (Eq 3):

�0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

540 log
1

d0

� �s

�þ 270 � e� � 1ð Þ ¼ 84:6�þ 270� e� � 1ð Þ ð3Þ

For � = 0.01, δ0 = 2−30, we have �0 = 0.8731 used to the existing deployment.

The rationale for using this range of epsilon lies in the fact that below 0.01 the infused noise

is extremely large, compromising the accuracy of the transition matrix, and above 16 the total

privacy budget is extremely large, compromising the privacy. More specifically, since the
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transition matrix used already has privacy noise applied, with a value of � = 16 means, the syn-

thetic transition obtained is similar to the one received from the provider. However, for � =

0.01, the synthetic data is more protective since low transitions are more hidden due to the

large amount of noise added through the Laplace mechanism. To simplify interpretation, from

here on, we evaluate noise which is the inverse of the privacy loss �.

Metapopulation model

The disease dynamic was modeled with a Susceptible-Exposed-Infected Symptomatic-Infected

asymptomatic model as follows (Eqs 4–7).

dSi
dt
¼ �

bSiIri
Ni
�
mbSiIui
Ni

ð4Þ

dEi
dt
¼
bSiIri
Ni
þ
mbSiIui
Ni
�
Ei
Z

ð5Þ

dIsi
dt
¼ a

Ei
Z
�
Isi
D

ð6Þ

dIai
dt
¼ 1 � að Þ

Ei
Z
�
Iai
D

ð7Þ

where Si, Ei, Isi ; I
a
i are the susceptible, exposed, infected symptomatic, infected asymptomatic,

and total population in a county i.
The synthetic mobility datasets were integrated into the previous system (Eqs 4–7) and doc-

umented [33] by the following equations (Eqs 8–12),

dSi
dt
¼ �

bSiIri
Ni
�
mbSiIui
Ni
þ y
X

j

MijSj
Nj � Irj

� y
X

j

MjiSi
Nj � Irj

ð8Þ

dEi
dt
¼
bSiIri
Ni
þ
mbSiIui
Ni
�
Ei
Z
þ y
X

j

MijEj
Nj � Irj

� y
X

j

MjiEi
Nj � Irj

ð9Þ

dIri
dt
¼ a

Ei
Z
�
Iri
D

ð10Þ

dIui
dt
¼ 1 � að Þ

Ei
Z
�
Iui
D
þ y
X

j

MijIuj
Nj � Irj

� y
X

j

MjiIui
Nj � Irj

ð11Þ

Ni ¼ Ni þ y
X

j
Mij � y

X

j
Mji ð12Þ

where Si, Ei, Iri ; I
u
i are the susceptible, exposed, documented infected, undocumented infected,

and total population in a county i.
The system of equations (Eqs 8–12) thus took into account both the mobility and the conta-

gion describing the epidemic’s evolution on the metapopulations network. We assumed that

the randomness in the contagion followed a Poisson distribution and was documented else-

where [33]. Most specifically, we seeded cases in a specific location, then, for each time t, the

disease spread through the metapopulation network according to the transition matrix when
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people are moving between counties from the first day to the 500th day. Key parameters and

sources in literature are described in Table 1.

Epidemiological metrics

In reviewing epidemiological models using mobility data, we identified salient metrics of inter-

est, including:

Probability of infection [34]: let denote G (V, E) the mobility network of unknown topology

where the vertices (V) are county/individuals with edges (u, v) E. u and v are the contacts likely

to result in infection. The model of disease dynamics can have four states described above

(Eq 8:12) and is assigned to each individual. There is a probability that an epidemic will evolve

through a particular sequence of states ϕ1, ϕ2,. . .,ϕn and a probability P that it will arrive at a

certain state. A given state’s ϕ1 probability is influenced by its previous state ϕ0 (Markov prop-

erty). The probability of u is infected {Iu, Ir} at the nth is given by (Eq 13):

Pðuj�1Þ ¼
Xn

j¼1
Pð�jðuÞ ¼ fI

u; Irgj�1Þ ð13Þ

The risk of importation [35]: Let Fi be the cumulative distribution function that the disease

is likely imported to a county j from a county i, Ti be the probability associated with the travel

from i, and nj the travel flux from i, the daily risk of importation Rj is given by (Eq 14):

Rj;t ¼
P

iFiniTiP
jFjnj

ð14Þ

Incubation period: It is the period of time between exposure to the disease-causing agent

and the onset of symptoms [36].

Mean importation rate: is the average number of infected cases that move to j during the

epidemiological season (Eq 15)

�Rj;t ¼
1

N

X

i
Rj;t ð15Þ

The effective reproduction rate [33] Re: is a time-depend metric that measures how fast a

disease is infectious given by the largest eigenvalue of the next-generation matrix method and

is given by (Eq 16)

Re ¼ abDþ ð1 � aÞmbD ð16Þ

Epidemic peak is the maximum number of infected over a time span of the epidemic [37].

Timing of the peak corresponds to the day the epidemic peak is reached [38].

Table 1. Parameters of the metapopulation model.

Parameters Definition Value References

β Transmission rate 0.8 Estimated

μ Factor of reduction of the transmission rate 0.5 Li et al. [33]

α Fraction of symptomatic 0.65 Li et al. [33]

Z Average latency period 3.6 Li et al. [33]

D Average duration of infection 3.14 Li et al. [33]

Mij Number of people travelling from county j to county i daily - Estimated

Mji Number of people travelling from county i to county j daily - Estimated

θ Multiplicative Travel Factor 1 Li et al. [33]

https://doi.org/10.1371/journal.pdig.0000233.t001
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The rate of spread represents the ratio of infected by susceptible over a time-span [39].

Proportion of counties with at least one case [40].

Epidemic size is the total number of infected divided by the population size of each county

and then multiplied by 100,000 individuals [41].

Size at the epidemic peak is the previous ratio by the day of the epidemic peak [42].

Epidemiological scenarios

To assess the effect of noise on these metrics, we evaluated eight scenarios with three salient

characteristics and provided a general formula to incorporate more. We evaluated scenarios

where the epidemiological metrics of interest were driven by i) the location of the first case, ii)

changes in connectivity, and iii) changes in epidemiological parameters (Table 2).

We explored several spatial epidemiological questions (Table 2) with our scenarios, includ-

ing how the place of outbreak affects the dynamics of the disease, how connectivity networks

could potentially affect epidemic dynamics, and how DP might ultimately affect the metric we

are interested in.

To assess the impact of privacy on the epidemiological metric, we ran each set of parameters

through 1000 Monte Carlo iterations and visualised the results.

Supporting information

S1 Fig. Simulated scenarios epidemiological curve embedding perturbed mobility matri-

ces. Scenarios 1 and 2 the disease is spread in two large and small counties, respectively; Sce-

narios 3, 4, and 5 the epidemic occurred in counties with no, medium to high connectivity

with neighboring counties; Scenarios 6, 7, and 8 key parameters such as the burden of asymp-

tomatic, the contact rate varied. Is, Ia, and Obs are infected symptomatic, infected asymptom-

atic, and observed.

(DOCX)

Table 2. Overview of the scenarios and the investigated question.

Characterisation of the

Scenario

Scenario Investigated question

1

Location of the first cases

The epidemic started in two large counties, i.e.,

Kings and Queens.

How does the perturbation of the transition matrix affect the epidemic

curve when the epidemic starts in well-visited areas that are New York

State?

2 The epidemic started in two small counties, i.e.,

Allegany and Essex.

How does the perturbation of the transition matrix affect the epidemic

curve when the epidemic starts in well-visited areas that are not New York

State?

3

Change in Connectivity

The epidemic started in two counties with 20% of

transitions, i.e., Saratoga and Monroe.

How does the perturbation of the transition matrix affect the epidemic

curve when the epidemic started in a region with low connectivity to New

York City?

4 The epidemic started in two random counties in the

median of transitions, i.e., Westchester and Putnam.

Is there a "dose-response" of the interaction between transitions?

5 The epidemic started in the counties of Schoharie

and Lewis with no transitions to New York City,

How does the perturbation of the transition matrix affect the epidemic

curve when the epidemic starts in locations that seem to be isolated from

New York City?

6

Change in parameters of the

metapopulation model

Increase the contact rate

(β = 0.9)

How does the perturbation of the transition matrix affect the epidemic

curve when the epidemic is more transmissible?

7 Increase asymptomatic burden

(α = 0.75)

How does the perturbation of the transition matrix affect the epidemic

curve when the burden of transmission is passed on by asymptomatic

individuals?

8 Decrease the asymptomatic burden

(α = 0.01)

How does the perturbation of the transition matrix affect the epidemic

curve when only symptomatic individuals transmit?

https://doi.org/10.1371/journal.pdig.0000233.t002
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